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Abstract

In this paper we forge a connection between dynamic epistemic logics of
belief revision on one hand and studies of collective judgement and multi-agent
preference change on the other. Belief revision in the spirit of dynamic epistemic
logic uses updating with relational substitutions to change the beliefs of indi-
vidual agents. Collective judgement in social choice theory studies the collective
outcomes of individual belief changes.

We start out from the logic of communication and change (LCC), which is
basically epistemic propositional dynamic logic (PDL) extended with update
action modalities. We show how epistemic PDL can be made to handle belief
operators. Our new version of epistemic/doxastic PDL does not impose any
constraints on the basic relations. Because of this it does not suffer from the
drawback of LCC that constraints on epistemic relations, such as transitivity
and reflexivity, may get lost under updates that are admitted by the system.

After introducing the base system without constraints, we study the effects
of imposing a single constraint, namely the constraint that the agent’s preference
relations are linked. Linkedness is a natural extension of local connectedness to
the multi-agent case. It assures that if Alice prefers y to x and Bob prefers z
to x, then both Alice and Bob can make up their minds when given a choice
between y and z. Since general belief changes may not preserve linkedness, we
propose a recipe for belief change that does preserve it.

Finally, we show that the resulting framework can be used to model con-
sensus seeking procedures. We focus on the case of plenary Dutch meetings.
In Dutch meetings, a belief change (or rather: preference change) is performed
for all agents in the meeting if a majority believes (or: is in favour of) the
proposition that is under discussion. A special case of these meetings is judge-
ment aggregation, and we apply our framework to the discursive dilemma in
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this field. Our framework has obvious connections to coalition logic and social
choice theory.

1 Introduction

In [17] the following problem in judgement aggregation is considered. There are three
judges a, b, c with a, b agreeing that p, and b, c agreeing that q, so that both p and q
command a majority, but p∧q does not. The example shows that majority judgement
is not closed under logical consequence. It seems that there is a collective belief in p
and in q, but not in p ∧ q.

To see the relevance of the example for the practice of law, assume that p expresses
that the defendant has done action X, and q expresses that the defendant is under a
legal obligation not to do X. Then p ∧ q expresses that the defendant has broken his
contract not to do X. So two of the three judges agree that the defendant has done
X, two of the three judges agree that the defendant is under a legal obligation not to
do X, but there is no majority for the verdict of ‘guilty’. This is a standard paradox
in judgement aggregation called the discursive dilemma or doctrinal paradox.

The discursive dilemma is an example of a situation where multiple agents have
different beliefs, and where a naive way of combining these beliefs — majority voting
on each individual belief — leads to an implausible outcome. What seems to be needed
is a more sophisticated way, or more sophisticated ways, to combine individual beliefs
into collective beliefs.

We will present an epistemic/doxastic framework that can be used to model such
situations, and present ways to update these frameworks with new beliefs. In the
above example, this gives various protocols for judgement aggregation that are differ-
ent from the above simple majority rule.

The framework of (our version of) doxastic/epistemic logic is quite abstract. It
starts out from a basic preference relation for each agent, without any constraints
on the preference relations. In particular, we do not insist that the preference re-
lations are reflexive or transitive. The relations in our framework can be seen as
plausibility relations, and used for modeling the beliefs of agents, as is the case in
the above example. But we can also view them as modelling preference, and arrive
at an interpretation that connects the framework to the area of social choice theory.
Henceforth, we will stick to ‘preference relation’, but we do not intend to exclude
other interpretations.

2 Preference Relations Without Constraints

A preference model M for set of agents Ag and set of basic propositions Prop is a
tuple (W,P, V ) where W is a non-empty set of worlds, P is a function that maps each
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agent a to a relation Pa (the preference relation for a), and V is a map from W to
P(Prop) (a map that assigns to each world a Prop-valuation). The tuple (W,P ) is
called the frame of the model. There are no conditions at all on the Pa. Appropriate
conditions will be imposed by constructing the operators for belief and knowledge by
means of PDL operations.

We fix a PDL style language for talking about preference. Assume p ranges over
a set of basic propositions Prop and a over a set of agents Ag. Then the language of
epistemic/doxastic PDL is given by:

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ
π ::= a | ǎ |?φ | π1;π2 | π1 ∪ π2 | π∗

We use PROG for the set of program expressions (expressions of the form π) of this
language.

The intuitive meaning of ǎ is ‘converse of a’, i.e., reversing the directions of
the arrows. The construct π1;π2 expresses sequential composition of relations. In
the standard interpretation of PDL, π∗ expresses program iteration. In our epis-
temic/doxastic interpretation, it expresses transitive closure of a (possibly complex)
preference relation.

The language is to be interpreted in the usual PDL manner, with [[[π]]]M giving the
relation that interprets relational expression π in M = (W,V, P ). [π]φ is true in world
w of M if for all v with (w, v) ∈ [[[π]]]M it holds that φ is true in v. We adopt the usual
abbreviations of ⊥, φ1 ∨ φ2, φ1 → φ2, φ1 ↔ φ2 and 〈π〉φ. The following additional
abbreviations allow us to express knowledge, strong belief, conditional belief and plain
belief:

knowledge [∼a]φ abbreviates [(a ∪ ǎ )∗]φ.

The formula [∼a]φ expresses that agent a knows that φ.

strong belief [≥a]φ abbreviates [a∗]φ.

The formula [≥a]φ expresses that agent a strongly believes that φ. The only
difference between knowledge and strong belief is that knowledge has the prop-
erty of negative introspection (if a does not know φ, then a knows that she does
not know φ), while strong belief lacks this property.

conditional belief [→φ
a ]ψ abbreviates 〈∼a〉φ→ 〈∼a〉(φ ∧ [≥a](φ→ ψ)).

The formula [→φ
a ]ψ expresses that in all of the agent’s preferred φ worlds, ψ

holds.
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plain belief [→a]ψ abbreviates [→>a ]ψ.

The formula [→a]ψ expresses that in all of the agent’s preferred worlds, ψ holds.
Note that this can be expressed equivelently as 〈∼a〉[≥a]φ.

The definition of →φ
a (conditional belief for a, with condition φ) is from Boutillier

[10]. This definition, also used in [4], states that conditional to φ, a believes in ψ if
either there are no accessible φ worlds, or there is an accessible φ world in which the
belief in φ → ψ is safe. The definition of →φ

a matches the well-known accessibility
relations →P

a for each subset P of the domain, given by:

→P
a := {(x, y) | x∼ay ∧ y ∈ MIN≤aP},

where MIN≤a
P , the set of minimal elements of P under ≤a, is defined as

{s ∈ P : ∀s′ ∈ P (s′ ≤a s⇒ s ≤a s′)}.

This logic is completely axiomatized by the standard PDL rules and axioms ([21;
16]) plus the following axioms that describe the relation between the basic programs
a and ǎ :

` φ→ [a]〈ǎ 〉φ ` φ→ [ǎ ]〈a〉φ

Any preference relation Pa can be turned into a pre-order by taking its reflexive
transitive closure Pa∗. The abbreviation for strong belief introduces the ≥a as names
for these pre-orders. The knowledge abbreviation introduces the ∼a as names for the
equivalences given by (Pa ∪ Pa )̌∗.

If the Pa are well-founded, MIN≤a
P will be non-empty for non-empty P . The

canonical model construction for PDL yields finite models. Therefore, the Pa relations
in the canonical model will be well-founded, for each relation on a finite model is well-
founded. Thus, there is no need to impose well-foundedness as a relational condition.
We get it for free by the fact that PDL has the finite model property.

This yields a very expressive complete and decidable PDL logic for preference, to
which we can add mechanisms for belief update and for belief revision.

Our logic is able to express knowledge and strong belief as single modalities (as
(a∪ǎ )∗ and a∗, respectively). We were unable to find single modalities for conditional
belief and plain belief, however. Note that expressing conditional belief in terms of
single unary modalities is different from expressing conditional belief as a single unary
modality. So we have the following conjecture, which we were unable to prove:

Conjecture It is impossible to describe conditional belief and plain belief as single
unary modalities in converse PDL.
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Intermezzo: Conditional Belief, Complement and Intersection

Instead of using PDL with converse as a basis for constructing logics of belief revision,
one might wish to use PDL with converse and complement, i.e., the result of adding
operations ǎ and π to the language, with π to be interpreted as relational comple-
mentation. Unfortunately, the resulting logic is undecidable [15]. Still, the advantage
of having complement available is that it allows us to express all our knowledge and
belief constructs as single unary modalities, as follows:

unary modality for knowledge (a ∪ ǎ )∗.

unary modality for strong belief a∗.

unary modality for conditional belief (a ∪ ǎ )∗; ?(φ ∧ [a∗ − a∗ ]̌¬φ).

unary modality for plain belief (a ∪ ǎ )∗; ?[a∗ − a∗ ]̌⊥.

This uses a∗ − a∗ ,̌ which can be expressed with complement as a∗ ∪ a∗ .̌ Note
that a∗ − a∗ˇ represents the moves to a strictly a-better world: w is related to w′ by
a∗ − a∗ˇ iff there is an a-path from w to w′ but not vice versa. It is easy to see that
?(φ ∧ [a∗ − a∗ ]̌¬φ) is true in a world w iff w is an a-best φ world.

But perhaps this shift to an undecidable logic is unnecessary. Maybe adding
intersection and converse to PDL is enough. Intersection PDL with converse is like
PDL, but with a construct for atomic converse and an operation π1 ∩ π2 for relation
intersection. Like PDL with converse, intersection PDL with converse is decidable
[18]. Here is an open question:

Question Is it possible to describe conditional belief and plain belief as single modal-
ities in intersection PDL with converse?

3 Belief Revision with Linked Preference Relations

The preference relations that serve as the basis for construction of a preference pre-
order in Section 2 leave something to be desired. Compare an optometrist who collects
answers for a number of lenses she tries out on you: “Better or worse?”, (change of
lens), “Better or worse?” (change of lens), “Better or worse?”. . . . If you reply “worse”
after a change of x to y, and “worse” after a change from y to z, she will most probably
not bother to collect your reaction to a change from x to z. But what if you answer
“better” after the second swap? Then, if she is reasonable, she will try to find out how
x compares to z. It does make sense to impose this as a requirement on preference
relations.
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There are several ways to do this. Recall that we did not impose a requirement
of transitivity on the basic preference relations. Here is a definition that does not
imply transitivity, but yields that the transitive closures of the basic preferences are
well-behaved. See Figure 1. The intended meaning is that if the black arrows are
present, either the grey arrow on the left or the grey arrow on the right has to be
present as well.

R

R∗

R∗ R

R∗

R∗

Figure 1. Forward linkedness of a binary relation R

Definition 3.1. A binary relation R is forward linked if the following holds:

∀x, y, z((xRy ∧ xR∗z)→ (yR∗z ∨ zR∗y)).

R is linked if both R and Rˇ are forward linked.

Note that this is different from the notion of weak connectedness (terminology of
[13]): a relation R is weakly connected if ∀x, y, z((xRy∧xRz)→ (yRz∨y = z∨zRy)).

Theorem 3.2. R is forward linked iff R∗ is weakly connected.

Proof. The right to left direction is immediate. For the left to right direction, assume
R is forward linked. Let wR∗w1 and wR∗w2. Then there is an n ∈ N with wRnw1.
We prove the claim by induction on n. If n = 0 then w = w1 and w1R

∗w2, and we are
done. Otherwise, assume the claim holds for n. We have to show it holds for n + 1.
Suppose wRn+1w1. Then for some w′, wRw′Rnw1. By forward linking of R, either
w′R∗w2 or w2R

∗w′. In the first case, use the induction hypothesis to get w1R
∗w2

or w2R
∗w1. In the second case, it follows from w2R

∗w′ and w′Rnw1 that w2R
∗w1.

q.e.d.

Starting from relations that are linked, one can use the method of construct-
ing knowledge and belief relations by means of the regular operations that was pre-
sented in the previous section to construct ‘preference models’ in the style of Grove
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[14], Board [9], and Baltag and Smets [3; 4] (who call them ‘multi-agent plausibility
frames’).

It is well-known that the following principle characterizes weak connectedness of
Pa (cf. [13]):

[a]((φ ∧ [a]φ)→ ψ) ∨ [a]((ψ ∧ [a]ψ)→ φ).

The notion of forward linking is characterized by:

[a]((φ ∧ [a∗]φ)→ ψ) ∨ [a∗]((ψ ∧ [a∗]ψ)→ φ). (*)

Theorem 3.3. Principle (*) holds in a belief revision frame iff Pa is forward linked.

Proof. Let (W,P ) be a frame where Pa is forward linked, and let M = (W,P, V ) be
some model based on the frame. We show that (*) holds. Let w be a world in M.
Assume M 6|=w [a]((φ∧ [a∗]φ)→ ψ). We have to show: M |=w [a∗]((ψ ∧ [a∗]ψ)→ φ).
From the fact that M 6|=w [a]((φ ∧ [a∗]φ)→ ψ), we get that there is a world w1 with
wPaw1 and M |=w1 φ ∧ [a∗]φ ∧ ¬ψ.

Let w2 be an arbitrary world with wP ∗aw2. Then by forward linking of Pa, either
w1P

∗
aw2 or w2P

∗
aw1. In the first case, it follows from M |=w1 [a∗]φ that M |=w2 φ,

and therefore M |=w2 (ψ∧ [a∗]ψ)→ φ. In the second case, it follows from M |=w1 ¬ψ
that M |=w2 ¬[a∗]ψ, and therefore M |=w2 (ψ ∧ [a∗]ψ) → φ. So in both cases,
M |=w2 (ψ ∧ [a∗]ψ)→ φ, and since w2 was an arbitrary world with wP ∗aw2, it follows
that M |=w [a∗]((ψ ∧ [a∗]ψ)→ φ).

Next, assume a frame (W,P ) where Pa is not forward linked. We will construct a
model M = (W,P, V ) and an instance of (*) that does not hold. If Pa is not forward
linked, there are w,w1, w2 with wPaw1, wP ∗aw2, and neither w1P

∗
aw2 nor w2P

∗
aw1.

We proceed to make an instance of (*) fail in w. Construct the valuation of M by
setting p true in w1 and in all worlds w′ with w1P

∗
aw
′, and false everywhere else, and

setting q true in w2 and in all worlds w′′ with w2P
∗
aw
′′, and false everywhere else.

Note that since not w1P
∗
aw2, p will be false in w2, and that since not w2P

∗
aw1, q will

be false in w1. So we get M |=w1 p ∧ [a∗]p ∧ ¬q and M |=w2 q ∧ [a∗]q ∧ ¬p. It follows
that

M |=w 〈a〉(p ∧ [a∗]p ∧ ¬q) ∧ 〈a∗〉(q ∧ [a∗]q ∧ ¬p),

i.e.,
M 6|=w [a]((p ∧ [a∗]p)→ q) ∨ [a∗]((q ∧ [a∗]q)→ p),

showing that this instance of (*) does not hold in M. q.e.d.

Remark. As one of the referees pointed out, (*) is a so-called Sahlqvist formula.
Such formulas are canonical for the properties they define. Canonicity of (*) for the
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property of forward linkedness means that the canonical frame for a normal modal
logic containing (*) is forward linked, and that (*) is valid on any class of forward
linked frames. See [8] for further details.

In the multi-agent case there is a further natural constraint. Consider a situation
where Alice and Bob have to decide on the chairperson of a program committee. Carol
is mediator. Alice says she prefers y to x. Bob counters by saying that he prefers z
to x. What should Carol do? Clearly, she should urge both of them to compare y and
z.

Translating this example to our logic of belief, we want to require that if x ≥a y
and x ≥b z, then either y ≥a z or z ≥a y and either y ≥b z or z ≥b y.

Definition 3.4 (Connectedness). A set of binary relations R on a domain W is
forward connected if for all R,S in R,

if xRy and xSz, then either ySz or zSy.

R is backward connected if the set {Rˇ | R ∈ R} is forward connected. R is
connected if R is both forward and backward connected.

Clearly, our motivating requirement that if x ≥a y and x ≥b z then either y ≥a z
or z ≥a y expresses that ≤a and ≤b are forward connected.

Another natural requirement is that if Alice prefers x to y and Bob prefers x to z,
then Alice and Bob should both compare y and z. If x ≤a y and x ≤b z then either
y ≤a z or z ≤a y (and similarly for ≤b). This expresses that ≤a and ≤b are backward
connected.

The following definition extends the notion of linkedness to the multi-agent case
(see Figure 2).

R

S∗

S∗ R

S∗

S∗ S

R∗

R∗ S

R∗

R∗

Figure 2. Forward linkedness of a pair of relations {R,S}.
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Definition 3.5 (Linkedness). A set of binary relations R on a domain W is for-
ward linked if for all R,S in R, if xRy and xS∗z, then either yS∗z or zS∗y. R is
backward linked if the set {Rˇ | R ∈ R} is forward linked. R is linked if R is both
forward and backward linked.

It follows from Definition 3.5 that the set {R} is forward linked iff R is forward linked
according to Definition 3.1. So Definition 3.5 gives a natural extension of linking (and
of local connectedness) to the multi-agent case.

The following theorem shows that Definition 3.5 can indeed replace Definition 3.4.

Theorem 3.6. R and S are linked iff R∗ and S∗ are connected.

Proof. The right to left direction is immediate.
For the left to right direction, assume R and S are linked. Suppose xR∗y and

xS∗z . We will prove that for any w on the R path from x to y, either wS∗z or zS∗w.
This clearly holds for w = x. Suppose w is the successor of w′ on the path, and the
result holds for w′. Suppose w′S∗z. Since w′Rw the result holds by forward linking
of R and S . Suppose yS∗w′. From w′Rw and w′S∗w′ we get that either w′S∗w
or wS∗w′. In the first case trivially yS∗w. Assume the second case. We will show
that for any v on the S path from w to w′, either vS∗y or yS∗v. This clearly holds
for v = w′. Suppose v is the predecessor of v′ on the path, and the result holds for
v′. Suppose v′S∗y. Then since vSv′, trivially vS∗y. Suppose yS∗v′. Then the result
holds by backward linking of S.

This shows that R∗ and S∗ are forward connected. The proof that R∗ and S∗ are
backward connected is similar. q.e.d.

If R and S are preference relations, (R∪R )̌∗ and (S∪S )̌∗ are knowledge relations.
The common knowledge relation (for the agents corresponding to R and S) is the
reflexive transitive closure of the two knowledge relations, so common knowledge is
expressed by:

((R ∪R )̌∗ ∪ (S ∪ S )̌∗)∗

This is easily seen to be equivalent to:

(R ∪Rˇ∪ S ∪ S )̌∗

As we will now show, if R and S are linked relations, then this can be simplified even
further. If R and S are linked then common knowledge equals the union of strong
common belief and strong reverse common belief:

Theorem 3.7. If R and S are linked, then

(R ∪Rˇ∪ S ∪ S )̌∗ = (R ∪ S)∗ ∪ (Rˇ∪ S )̌∗.
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Proof. The inclusion from right to left is obvious. For the inclusion from left to right,
assume x(R∪Rˇ∪S∪S )̌∗y. Letting X and Y range over R and S, observe that each
X ◦ Y ∗̌ link can be replaced by either a Y ∗ or a Y ∗̌ link, and similarly for Xˇ◦ Y ∗
links, by linking of R and S. Continuing this process until all one-step links are of
the form R ∪ S or of the form Rˇ∪ S ,̌ this yields x(R ∪ S)∗y or x(Rˇ∪ S )̌∗y. q.e.d.

The theorem shows that linking of relations simplifies the notion of common knowl-
edge.

The modal characterization of relation linking is given by:

[a]((φ ∧ [b∗]φ)→ ψ) ∨ [b∗]((ψ ∧ [b∗]ψ)→ φ) (LINK)

Theorem 3.8. The set of LINK principles (with a, b ranging over the set of all agents)
holds in a preference model iff the basic preference relations in the model are forward
linked.

Proof. Analogous to the proof of Theorem 3.3. q.e.d.

4 Belief Update and Belief Change

For the definition of action models A and of the update product operation ⊗ that
combines an epistemic model and an action model, to produce an updated epistemic
model, we refer to [2]. In [7] it is shown how extending the PDL language with an
extra modality [A, e]φ, where A is an action model and e is a designated action of A,
does not change its expressive power. Interpretation of the new modality: [A, e]φ is
true in w in M if success of the update of M with action model A to M⊗A implies
that φ is true in (w, e) in M⊗A. The logic of PDL with action modalities added was
called LCC or logic of communication and change.

0 : h 1 : h

a

0 : h (0, 0) : h

Figure 3. Belief about h, belief update, and its result.

LCC, as proposed in [7], has a design flaw: it starts out from individual agent
accessibity relations with the appropriate properties for knowledge or for belief. But
updates with non S5 action models may destroy these properties: the update product
of an S5 model with a non-S5 action model is in general not an S5 model. This



4. BELIEF UPDATE AND BELIEF CHANGE 11

means that the resulting relations cannot be interpreted as epistemic accessibilities
any longer. Similarly, if one interprets the agent accessibilities as belief. A KD45
model can easily change into a non KD45 model by an appropriate action update.
This issue is remedied in [12], where it was first proposed to construct the relational
properties for knowledge from more basic relations, by means of the PDL operations.
The present paper proposes the same for (conditional) belief. Action update by means
of the product construction can now be viewed as belief update. In Figure 3 belief
update about a coin toss is modelled. Agent a initially believes ¬h, while h (heads)
is actually the case,. for h is true in the actual world, shown in grey. Next, h is
announced. The result of the belief update is that a now believes h.

Belief change is something different from belief update. Update can never reverse
the directions of relational arrows, or introduce new arrows, for the arrows in the
update result are the arrows that are present in the situation before the update and
in the action model. Belief change is something more radical than this: replacing
existing preference relations by new ones.

Here, we will focus on belief change rather than belief update. Belief change can
be compared to factual change. A coin shows head, you toss it again, and now it shows
tails. This can be modeled as a propositional substitution {h 7→ ¬h}. Similarly for
belief change. Agent a prefers x to y, she changes her preference, and now she prefers
y to x. Or suppose she reverses all her preferences. This can also be handled as a
substitution, {a 7→ ǎ }.

In [7], it was proposed to handle factual change by propositional substitution.
Relational substitutions were proposed for belief change in [5], and it was shown in
[11] that adding relational substitutions for preference change to epistemic PDL makes
no difference for expressive power: the resulting system still reduces to PDL.

A preference substitution is a map from agents to PROG expressions that can be
represented by a finite set of bindings

{a1 7→ π1, . . . , an 7→ πn}

where the aj are agents, all different, and where the πi are PROG expressions. It is
assumed that each a that does not occur in the left hand side of a binding is mapped
to a. Call the set {a ∈ Ag | ρ(a) 6= a} the domain of ρ. If M = (W,P, V ) is a
preference model and ρ is a preference substitution, then Mρ is the result of changing
the preference map P of M to P ρ given by:

P ρ(a) :=
{
Pa for a not in the domain of ρ,
[[[ρ(a)]]]M for a in the domain of ρ.

Now extend our PDL language with a modality [ρ]φ for preference change, with the
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following interpretation:

M, w |= [ρ]φ :⇐⇒ Mρ, w |= φ.

An important thing to note is that since there are constraints on the preferences
Pa (they are linked), we need to ensure that the belief changing substitutions satisfy
these constraints. We leave the general problem of finding a precise characterization
of linking-preserving substitutions for future research. Here we focus on a particular
kind of belief change. Consider the suggestive upgrade ]aφ discussed in Van Benthem
and Liu [6]:

]aφ =def ?φ; a; ?φ ∪ ?¬φ; a; ?¬φ ∪ ?¬φ; a; ?φ.

This is a variation on what is called lexicographic upgrade in the belief revision
community (see e.g., [19]). The suggestive upgrade removes all relations from φ-
worlds to ¬φ-worlds. Clearly, belief revisions with suggestive upgrade do not preserve
linking of relations. For consider a case where wPaw1 and wP ∗aw2 and w1P

∗
aw2, with

φ true in w1 but not in w and w2. Then suggestive upgrade will remove the a-path
from w1 to w2 (see Figure 4).

w : ¬φ

w1 : φ

w2 : ¬φ

a

a∗

a∗

w : ¬φ

w1 : φ

w2 : ¬φ

a

a∗

Figure 4. Suggestive upgrade does not preserve linking.

However, if we revise the upgrade procedure so that it adds extra links instead of
removing them, as follows, we get a variation that preserves linking:

\aφ =def ?φ; a∗; ?φ ∪ ?¬φ; a∗; ?¬φ ∪ ?¬φ; (a∗ ∪ ǎ ∗); ?φ.

Thus, links from φ worlds x to ¬φ worlds y get reversed, and extra links to x
get added to ‘support’ the new link from y to x. Moreover, φ to φ links and ¬φ to
¬φ links are strengthened by means of transitive closure, in order to deal with the
problem of detours through worlds that assign a different truth value to φ.

We can prove the following.
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Theorem 4.1. If M = (W,P, V ) is a preference model where Pa and Pb are linked,
and φ is a PDL formula, then [[[\aφ]]]M and Pb are also linked.

Proof. Write a for Pa, b for Pb, and \aφ for [[[\aφ]]]M. First note that for any worlds x
and y, if xa∗y then either x(\aφ)y or y(\aφ)x.

Suppose xby and x(\aφ)∗z. We will show that either wa∗y or ya∗w for all w on
the path from x to z. Firstly let w = x. Since xby and xa∗x, either xa∗y or ya∗x by
linking of a and b. Now let w′ be the predecessor of w on the path, so x(\aφ)∗w′ and
w′(\aφ)w. Suppose either ya∗w′ or w′a∗y. Since w′(\aφ)w, either w′a∗w or wa∗w′. If
ya∗w′ and w′a∗w or wa∗w′ and w′a∗y, then trivially ya∗w or wa∗y. Suppose w′a∗y
and w′a∗w. By forward linking of a and Theorem 3.2, wa∗y or ya∗w. Suppose ya∗w′

and wa∗w′. By backward linking of a and Theorem 3.2, ya∗w or wa∗y. So then for
any w on the path wa∗y or ya∗w, so za∗y or ya∗z, so z(\aφ)y or y(\aφ)z.

Suppose x(\aφ)y and xb∗z. Then either xa∗y or ya∗x. In the first case the result
follows by Theorem 3.6. Suppose ya∗x. We will show that for any w on the path
from x to z, yb∗w or wb∗y. Firstly let w = x. ya∗x and yb∗y so by Theorem 3.6 the
result holds. Suppose w′ is the predecessor of w on the path and the result holds for
w′. Suppose yb∗w′. Then since w′bw, trivially yb∗w. Suppose w′b∗y. Then the result
holds by linkedness of b. q.e.d.

Now call a substitution where all bindings are of the form a 7→ \aφ a linked
substitution. Then we get a complete logic for belief change with linked substitutions,
by means of reduction axioms that ‘compile out’ the belief changes (see [11]):

Theorem 4.2. The logic of epistemic preference PDL with belief change modalities
for linked substitutions is complete.

Proof. The preference change effects of [ρ] can be captured by a set of reduction
axioms for [ρ] that make [ρ] act as identity on basic propositions,

[ρ]> ↔ >
[ρ]p ↔ p,

make [ρ] commute with the boolean operators,

[ρ]¬φ ↔ ¬[ρ]φ
[ρ](φ1 ∧ φ2) ↔ [ρ]φ1 ∧ [ρ]φ2

and that handle formulas of the form [ρ][π]φ by means of reduction axioms of the
form

[ρ][π]φ ↔ [Fρ(π)][ρ]φ,
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with Fρ given by:
Fρ(a) := ρ(a)
Fρ(?φ) := ?[ρ]φ,
Fρ(π1;π2) := Fρ(π1);Fρ(π2),
Fρ(π1 ∪ π2) := Fρ(π1) ∪ Fρ(π2),
Fρ(π∗) := (Fρ(π))∗.

It is easily checked that these reduction axioms are sound, and that for each formula of
the extended language the axioms yield an equivalent formula in which [ρ] occurs with
lower complexity, which means that the reduction axioms can be used to translate
formulas of the extended language to PDL formulas. Completeness then follows from
the completeness of PDL. q.e.d.

5 Analyzing Plenary Dutch Meetings

A plenary Dutch meeting (Dutch: ‘Vergadering’) is a simultaneous preference/belief
change event where the following happens. Assume an epistemic situation M with
actual world w, and assume proposition φ is on the agenda.

• If a majority prefers φ to ¬φ, i.e., if

|{i ∈ Ag |M |=w [→i]φ}| > |{i ∈ Ag |M |=w [→i]¬φ}|

then simultaneous belief change {i 7→ \iφ | i ∈ Ag} takes place.

• If a majority prefers ¬φ to φ, i.e., if

|{i ∈ Ag |M |=w [→i]φ}| < |{i ∈ Ag |M |=w [→i]¬φ}|

then simultaneous belief change {i 7→ \i¬φ | i ∈ Ag} takes place.

• If there is no majority either way, nothing happens.

In fact, Dutch meetings are procedures for judgement aggregation [17]. Let us
return to our example of three judges a, b, c with a, b agreeing that p, and b, c agreeing
that q, so that both p and q command a majority, but p∧ q does not. Using our logic,
we can picture the situation as a preference model. We assume that every agent has
greater belief in worlds that match her beliefs in more propositions. Then we get the
model of Figure 5.

So a has the greatest belief in the world where p and not q hold, but after that
she has more belief in a world where p and q both hold than in the world where q
and not p hold, because in the first world at least her belief in p is right. Similarly
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pq pq̄

p̄q

b, c

a

a, b

c

a
b

c

Figure 5. Preference model for the case of the three judges.

for c. For b, she believes in the world where p and q hold, and values the other worlds
equally plausible.

In this model the following formulas hold:

[→a]p, [→b]p, [→b]q, [→c]q, [→a]¬(p ∧ q), [→c]¬(p ∧ q).

This shows that there are majority beliefs in p and in q, but there is also a majority
belief in ¬(p ∧ q). If the judges decide to have a Dutch meeting about p, the result
will be unanimous belief in p (see Figure 6).

pq pq̄

p̄q

b, c

a

a, b, c a, b, c

Figure 6. Result of Dutch meeting about p.
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pq pq̄

p̄q

a, b, c

a, b, c a, b, c

Figure 7. Result of Dutch meeting about q after Dutch meeting about p.

Now if the judges hold a subsequent Dutch meeting about q, the result will be
unanimous belief in q (see Figure 7). Now the judges unanimously believe in p∧ q, so
the defendant will be judged guilty.

pq pq̄

p̄q

a, b, c

a, b, c
a

b

c

Figure 8. Result of Dutch meeting about p ∧ q.

However, if a Dutch meeting about p ∧ q was held in the first place, the result
would be belief in ¬(p ∧ q) (see Figure 8). Clearly, in this case the defendant would
be acquitted.

Experienced judges are of course familiar with this phenomenon. Procedural dis-
cussions about how to decompose a problem, and in which order to discuss the com-
ponent problems may seem beside the point of a legal issue, but they turn out to
be highly relevant for the outcome of the legal deliberations. Our logic can be used
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to model the various procedural approaches for arriving at a unanimous conclusion.
See [20] for an alternative analysis of procedural aspects in processes of judgement
aggregation, in terms of coalition logic.

6 Conclusion

We have shown how propositional dynamic logic with converse can be used as a
basis for developing a very expressive system of multi-agent belief revision and belief
change, and we have studied linking of beliefs as a natural requirement on multi-agent
belief change.

In future work, we would like to answer the open technical questions that were
mentioned at the end of Section 2. Also on our research agenda is the problem of
finding natural classes of substitutions that preserve relation linking.

Next, since our logic provides a general mechanism for simultaneous belief change,
it can be used to describe and analyse topics in judgement aggregation, the effects of
agenda setting, the effects of subgroup meetings to create general belief, and many
further issues of collective rationality.

Finally, we would like to compare our logic to other proposals to give a modal
analysis of judgement aggregation, such as [1], and we would like to find out if our
logic can be put to work in practical social choice analysis.
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